

Computer Organization

&

Architecture

For

Computer Science
&

Information Technology

By

www.thegateacademy.com
✆080-40611000

http://www.thegateacademy.com/

Syllabus

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com

Syllabus for Computer Organization & Architecture

Machine Instructions and Addressing Modes, ALU, Data‐Path and Control Unit, Instruction

Pipelining, Memory Hierarchy, Cache, Main Memory and Secondary Storage, I/O Interface (Interrupt

and DMA Mode).

Previous Year GATE Papers and Analysis

GATE Papers with answer key

Subject wise Weightage Analysis

thegateacademy.com/gate-papers

thegateacademy.com/gate-syllabus

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved.Web:www.thegateacademy.com i

Contents

 Chapters Page No.

#1. Introduction 1 – 35

 Computer Architecture 1

 Computer Organization 1

 Computer Design 1 – 4

 Positional Numbering Systems 4 – 8

 Binary Data Representation 8 – 12

 Hamming Codes 12 – 15

 Booth’s Algorithm 15 – 25

 CPU Design 25 – 26

 Binary Adder 27 – 32

 Arithmetic Logic Unit (ALU) 32 – 35

#2. Memory Hierarchy 36 – 51

 Introduction 36

 Memory Parameter 36 – 37

 Main Memory 38 – 42

 Cache Memory 42 – 47

 Virtual Memory 48 – 50

 Solved Examples 51

#3. Pipelining and Vector Processing 52 – 65

 Parallel Processing 52 – 56

 Pipelining 56 – 63

 Hardware Technique 63

 Software Technique 63 – 64

 Solved Example 65

#4. Instruction Set and Addressing Mode 66 – 72
 Introduction 66

 Instruction format 66 – 69

 Addressing Modes 69 – 71

 CISC and RISC 71 – 72

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved.Web:www.thegateacademy.com ii

#5. CPU Operation and Design 73 – 80
 CPU Operations 73 – 76

 Data Path and Control Path 76 – 77

 Machine Cycle 77 – 80

#6. I/O Interface (Interrupt and DMA Mode) 81 – 93
 Introduction 81

 Difference Between the Computer and Peripheral Devices 81

 I/O Bus and Interface Modules 82

 I/O Bus and Memory Bus 82

 Modes of Data Transfer 83 – 86

 I/O Communication Technique 86

 Programmed I/O 86 – 87

 Interrupt Driven I/O 87 – 88

 Direct Memory Access (DMA) 88 – 89

 Multi-Cycle Transfer 89 – 93

 #7. Control Unit Design 94 – 131
 Von-Neumann Architecture 94– 95

 Von-Neumann Bottleneck 95 – 96

 Harvard Architecture 96

 Control Unit 96 – 99

 Solved Examples 99 – 100

Reference Books 101

http://www.thegateacademy.com/

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 1

“The best way to predict your future is to create it.”

…..Abraham Lincoln

Introduction

Learning Objectives
After reading this chapter, you will know:

1. Computer Architecture

2. Computer Organization

3. Computer Design

4. Positional Numbering Systems

5. Binary Data Representation

6. Hamming Codes

7. Booth’s Algorithm

8. CPU Design

9. Binary Adder

10. Arithmetic Logic Unit (ALU)

Computer Architecture
Computer architecture deals with the structure and behavior of the computer system. It includes the

information formats, the instruction set and the hardware units that implement the instructions

along with the techniques for addressing memory.

Computer Organization
Computer organization deals with the way the various hardware components operate and the way

they are connected together to form the computer system. It also deals with the units of the

computer that receive information from external sources and send computed results to external

destinations.

Computer Design
Computer design is concerned with the hardware design of the computer. This aspect of computer

hardware is sometimes referred to as computer implementation. Figure. Shows in the below basic

building blocks of a typical computer system.

MEMORY

INPUT OUTPUT
ALU

CPU

CU

Basic Functional Units of a Computer

1

C
H

A
P

T
E

R

http://www.thegateacademy.com/

 Introduction

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 2

 The basic blocks available in any digital computer are, Arithmetic Logic Unit (ALU), Control

Unit, Memory and Input/Output Unit.

 Input Unit

It is a medium of communication between the user and the computer. With the help of input

units only, it is possible to enter programs and data to the computer.

E.g.: Keyboard, floppy disk drive, hard disk drive, mouse, Magnetic Ink Character Recognition

(MICR), Optical Character Recognition (OCR), paper tape reader, Magnetic tape reader, Scanner

etc. Joy stick,

 Output Unit

It is a medium of communication between the computer and the user. With the help of output

units only, it is possible to get results from the computer.

Example: Printers, Video Display Unit (VDU), Floppy disk drive, Hard disk drive, Magnetic tape

drive, punched cards, paper tape, plotter, digitizer etc.

Memory: The memory unit is responsible for storing the user programs and data. The digital

computer memory unit mainly consists of two types of memories: Read Only Memory (ROM) and

Read Write Memory (R/WM) or Random Access Memory (RAM).

 ROM

ROM is used to store permanent programs or system programs. It does not have write

capability.

Types: PROM, EPROM, EEPROM

 RAM

It is also called user memory because the user programs or application programs are stored in

this memory. The CPU is able to write or read information into or from this type of memory.

Types: static, dynamic, scratch pad etc.

Central Processing Unit (CPU)

The ALU and Control Unit together are called CPU. It is the heart of any digital computer.

ALU (Arithmetic Logic Unit)

The data processing part of CPU is responsible for executing arithmetic and logical instructions on

various operand types including fixed point and floating point numbers.

Various circuits used to execute data processing instructions are usually combined in a single circuit

called an arithmetic logic unit (ALU). The complexity of an ALU is determined by the way in which

its arithmetic instructions are realized. Simple ALU’s those perform fixed point addition and

subtraction as well as word based logical operations, can be realized by combinational circuits.

Much more extensive data processing and control logic are necessary to implement is floating point

arithmetic in hardware.

http://www.thegateacademy.com/

 Introduction

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 3

Example: For finding the sum of a series x = y × 2 + y × 4 + y × 8 + ………+ y × 128, how will

you use an ALU without a multiplier unit but with an adder and barrel shifter? Barrel

shifter is a shifter that does n − bit shift in one clock cycle.

Solution: Left shift by 7 means multiplication by 128,6 means multiplication by 64,5 means

multiplication by 32, ……… and 1 means multiplication by2. Hence the shift operations

will be faster for computing. Using the barrel shifter seven times for shifting by 1,2,3,4 …..,

we find and store left shifted values of 𝑦 in a register and add these values.

Two Types of ALUs

1. Combinational ALUs

The simple ALU combine the functions of 2’s complement adder-subtracter with those of a

circuit that generates word based logic functions of the form f(x, y).

For example AND, XOR and NOT. They can thus implement most of a CPU’s fixed point data

processing instructions.

2. Sequential ALU’s

Both multiplication and division can be implemented by combinational logic. It is generally

impractical to merge these operations with addition and subtraction into a single,

combinational ALU.

The combinational multipliers and dividers are costly in terms of hardware. They are also much

slower than addition and subtraction.

An n-bit combinational multiplier or divider is typically composed of n or more levels of add-

subtract logic, making multiplication and division at least ‘n’ times slower than addition (or)

subtraction, where addition and subtraction each takes one clock cycle, while multiplication and

division are multicycle operations.

Example: How many 16-bit ALU slices can be used for designing a 64-bit ALU?

Solution: Four slices will be needed in parallel if ALU 64-bits operations are to take nearly the same

time as 16-bit slice, and four slices will be needed in series if ALU 64- bits operations are

to take nearly four times of 16-bit slice.

Interconnection of Basic of Blocks

In order to form an operational system individual components or parts of computer that we have

discussed need to be connected in some organized way, for this purpose, ‘bus’ is introduced which is

defined as a group of lines that serves as a connecting path for several devices. These lines carry

data, address and control signals. Figure. Shows in the below exemplanary interconnection using

single bus structure

Output Memory CPU

Single-Bus Structure

Input

http://www.thegateacademy.com/

 Introduction

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 4

Since, this bus can be used only for single transfer at a time multiple buses are introduced so as to

achieve more concurrency in operations so that two or more transfers can be carried out at the

same time. Hereby, increasing performance but at an increased cost.

Control Unit

The control unit (CU) is the heart of the CPU. Every instruction CPU supports has to be decided by

the CU and executed appropriately. Every instruction consists of a sequence of micro instructions

that carries out that instruction The CU controls the elements inside the CPU and the interfaces to

the external data rate.

Following are the Basic Tasks of the Control Unit

1. For each instruction the CU causes the CPU to go through a sequence of control steps:

2. In each control step the CU issues a set of signal which caused the corresponding operation to

be executed.

3. The signals to be generated by CU depends upon the actual step to be executed, the condition

and states of flag register of the processor, the actual instruction to be executed and any

external signals received on the system bus (i.e., interrupt signals)

Basic Task of CU

Positional Numbering Systems
The general idea behind positional numbering systems is that a numeric value is represented

through increasing powers of a radix (or base). This is often referred to as a weighted numbering

system because each position is weighted by a power of the radix.

 The set of valid numerals for a positional numbering system is equal in size to the radix of that

system. For example, there are 10 digits in the decimal system, 0 through 9, and 3 digits for the

ternary (base 3) system, 0, 1, and 2. The largest valid number in a radix system in one smaller than

the radix, so 8 is not a valid numeral in any radix system smaller than 9. To distinguish among

numbers in different radices, we use radix as a subscript, such as in 3310 to represent the decimal

number 33. (In this text, numbers written without a subscript should be assumed to be decimal.)

Any decimal integer can be expressed exactly in any other integral base system.

IR

Common Signals
Internal to the CPU

Common Signals
Internal on system Bus

Signals from System Bus

Control Unit (CU)

Clock

Flags

http://www.thegateacademy.com/

 Introduction

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 5

Example: Three numbers represented as powers of a radix.

243.5110 = 2 × 10
2 + 4 × 101 + 3 × 100 + 5 × 10−1 + 1 × 10−2

2123 = 2 × 3
2 + 1 × 31 + 2 × 30 = 2310

101102 = 1 × 2
4 + 0 × 231 × 22 + 1 × 21 + 0 × 20 = 2210

The two most important radices in computer science are binary (base two), and

hexadecimal (base 16). Another radix of interest is octal (base 8). The binary system uses

only the digits 0 and 1; the octal system, 0 through 7. The hexadecimal system allows the

digits 0 thought 9 with A, B, C, D, E, and F being used to represent the numbers 10

through 15.

Powers of 2 Decimal 4-Bit Binary Hexadecimal

2−2 =
1

4
= 0.25

0 0000 0

2−1 =
1

2
= 0.5

1 0001 1

20 = 1 2 0010 2
21 = 2 3 0011 3

22 = 4 4 0100 4

23 = 8 5 0101 5
24 = 16 6 0110 6

25 = 32 7 0111 7

26 = 64 8 1000 8
27 = 128 9 1001 9
28 = 256 10 1010 A

29 = 512 11 1011 B

210 = 1024 12 1100 C

215 = 32,768 13 1101 D

216 = 65,536 14 1110 E
 15 1111 F

Some Numbers to Remember

Converting Unsigned Whole Numbers

We begin with the base conversion of unsigned numbers. Conversion of signed numbers (numbers

that can be positive or negative) is more complex, and it is important that you first understand the

basic technique for conversion before continuing with signed numbers.

Conversion between base systems can be done by using either repeated subtraction or a division-

remainder method. The subtraction method is cumbersome and requires a familiarity with the

powers of the radix being used, because it the more intuitive of the two methods, however, we will

explain it first.

As an example, let’s say we want to convert 10410 to base 3. We know that 34 = 81 is the highest

power of 3 that is less than 104, so our base 3 number will be 5 digits wide (one for each power of

the radix: 0 through 4). We make note that 81 goes once into 104 and subtract, leaving a difference

of 23. We know that the next power of 3, 33 = 27, is too large to subtract, so we note the zero.

“Placeholder” and look for how many times 32 = 9 divides 23. We see that it goes twice and subtract

18. We are left with 5, from which we subtract 31 = 3, leaving 2, which is 2 × 30.

http://www.thegateacademy.com/

 Introduction

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 6

Example:

Convert 10410 to base 3 using subtraction.
104
−81

23

= 34 × 1

−0

23
= 33 × 0

−18

5
= 32 × 2

−3

2
= 31 × 1

−2

0
= 30 × 2

10410 = 102123

The division-remainder method is faster and easier than the repeated subtraction

method. It employs the idea that successive division by the base are in fact successive

subtractions by powers of the base. The remainders that we get when we sequentially

divide by the base end up being the digits of the result, which are read from bottom to

top.

Example:

Convert 14710 to binary.
2 ÷ 147 1 2 Divides 147 73 times with a remainder of 1
2 ÷ 73 1 2 Divides 73 76 times with a remainder of 1
2 ÷ 36 0 2 Divides 36 18 times with a remainder of 0
2 ÷ 18 0 2 Divides 18 9 times with a remainder of 0
2 ÷ 9 1 2 Divides 9 4 times with a remainder of 1
2 ÷ 4 1 2 Divides 4 2 times with a remainder of 0
2 ÷ 2 1 2 Divides 2 1 times with a remainder of 0
2 ÷ 1 1 2 Divides 1 0 times with a remainder of 1
 0

Reading the remainders from bottom to top, we have: 14710 = 100100112.

A binary number with N bits can represent unsigned integers from 0 to2N − 1. For

example, 4 bits can represent the decimal values 0 through 15, whereas 8 bits can

represent the values 0 through 255. The range of values that can be represented by a

given number of bits is extremely important when doing arithmetic operations on binary

numbers. Consider a situation in which binary numbers are 4 bits in length, and we wish

to add11112. (1510) to11112. We know that 15 plus 15 is 30, but 30 cannot be

represented using only 4 bits. This is an example of a condition known as overflow, which

occurs in unsigned binary representation when the result of an arithmetic operation is

outside the range of allowable precision for the given number of bits..

http://www.thegateacademy.com/

	Coverpage
	Syllabus
	Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Reference book

